Two-Stage Metric Learning
نویسندگان
چکیده
In this paper, we present a novel two-stage metric learning algorithm. We first map each learning instance to a probability distribution by computing its similarities to a set of fixed anchor points. Then, we define the distance in the input data space as the Fisher information distance on the associated statistical manifold. This induces in the input data space a new family of distance metric with unique properties. Unlike kernelized metric learning, we do not require the similarity measure to be positive semi-definite. Moreover, it can also be interpreted as a local metric learning algorithm with well defined distance approximation. We evaluate its performance on a number of datasets. It outperforms significantly other metric learning methods and SVM.
منابع مشابه
Inference Driven Metric Learning (IDML) for Graph Construction
Graph-based semi-supervised learning (SSL) methods usually consist of two stages: in the first stage, a graph is constructed from the set of input instances; and in the second stage, the available label information along with the constructed graph is used to assign labels to the unlabeled instances. Most of the previously proposed graph construction methods are unsupervised in nature, as they i...
متن کاملInference Driven Metric Learning for Graph Construction
Graph-based semi-supervised learning (SSL) methods usually consist of two stages: in the first stage, a graph is constructed from the set of input instances; and in the second stage, the available label information along with the constructed graph is used to assign labels to the unlabeled instances. Most of the previously proposed graph construction methods are unsupervised in nature, as they i...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملAdversarial Metric Learning
In the past decades, intensive efforts have been put to design various loss functions and metric forms for metric learning problem. These improvements have shown promising results when the test data is similar to the training data. However, the trained models often fail to produce reliable distances on the ambiguous test pairs due to the distribution bias between training set and test set. To a...
متن کامل